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1.0 Introduction 
 

The Development and Evaluation of Fusion Techniques (DEFT) in-house program was initiated with 

the intent of addressing multiple areas.  The first purpose of DEFT was to extend the development of 

algorithmic concepts that had been identified and explored under the previous Complementary Advanced 

Fusion Exploration (CAFÉ) in-house program.  CAFÉ investigated promising recent innovations, 

primarily involving mathematical concepts within the area of basic research, and did a preliminary 

assessment of their validity as well as a preliminary qualitative assessment of each concept’s potential for 

application to Air Force Command, Control, Intelligence, Reconnaissance, and Surveillance (C2ISR) 

capabilities and systems.  DEFT was intended to continue the investigation of potential exploratory 

development applications of the CAFÉ algorithmic concepts and to investigate concepts that were 

revealed as extensions of the original CAFÉ concepts. 

Areas of investigation under CAFÉ that were originally identified for further exploration under 

DEFT included the use of Trilinear tensors (including Homography) for use in the reprojection of images, 

the Nash (Grocholsky) Equilibrium Approach to Sensor Management, the Virtanen Methodology 

Approach, improvements in handling the Out of Sequence Problem (OOSP) and Out of Sequence 

Measurement (OOSM) updating, and further study in the area of Particle Filters and their applications. 

In addition, DEFT was intended to study other Exploratory Development topics not previously 

investigated under CAFÉ.  These topics included Bayesian Network exploitation for fusion, Optimization 

of ISR platform route determination, and Radio Frequency (RF) tag utilization. 

The first area to be pursued under DEFT was the area of Particle Filtering.  As work proceeded 

on this area, it became clear that study in this area should become the focus of the DEFT in-house 

program.  This is what took place.  As a result, no work took place on the other originally intended topics. 

As the work focused on Particle Filtering, the directions of the work were clarified.  The nature of 

the problem being addressed was that traditional trackers, based around the Kalman Filter, were designed 
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to deal with linear targets with Gaussian noise statistics.  However, targets are not constrained to behave 

in these ways, and so methods are needed to deal with targets that are not behaving in these ways. 

The Particle Filter is one such method.  It does not make the assumptions of linearity and 

Gaussianity that the Kalman Filter does, but it requires a large number of computations, depending on 

how parameters are set. 

To assess the usefulness of the Particle Filter, a systematic program was initiated to investigate it 

to assess its practicality and usefulness.  This program involved a number of areas.  First, further study 

was required to understand the mathematical basis for why the Particle Filter provides improved filtering 

and is a basis of improved tracking in situations of interest.  Next, it was desired to create and/or obtain a 

simulation as a framework for systematic parametric testing of the performance of the particle filter 

versus other types of filters. However, the goals of this effort, in addition to those of CAFÉ were to take a 

more focused approach to fusion techniques. That is, DEFT looked to focus on a deep mathematical 

understanding of algorithms researched under CAFÉ, as well as to go beyond the work done under CAFÉ 

by creating in-house implementations for the testing of these algorithms. The team looked to create an in-

house testbed that would serve as a model for other multi-sensor fusion studies, as well as to, as the name 

suggests, evaluate the performance of these methods. These tasks were created to advance and assess new 

algorithmic concepts in order to enhance the capabilities available to track maneuvering and 

unpredictable targets. DEFT searched for algorithms and techniques that would optimally fuse the 

information available. 

 

The scenarios for concern included those situations that involve highly non-linear and non-Gaussian 

characteristics. While existing methods, such as the Kalman (KF) and Extended Kalman Filters (EKF), 

perform sufficiently in linear and Gaussian cases, these algorithms tend to lose tracks and perform 

unreliably when faced with data that exhibits alternative behavior. In order to gain increased tracking 

accuracy and reliability, the team proposed the prospects of using a Particle Filtering (PF) algorithm. 

Based on research done under CAFÉ, as well as the fact that there are no assumptions of linearity or 
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Gaussianity made in the PF, these filters showed potential for providing an innovative approach to the 

non-linear and non-Gaussian scenarios under which the Kalman Filters have shown possible weaknesses. 

 

The approach of this effort was to mathematically characterize the algorithms under investigation. Once a 

working definition and understanding of the techniques was developed, the team, in collaboration with 

Syracuse University, created an implementation of these algorithms to evaluate the performance of the 

techniques on the standards of position error, computational expenditures, and characterizations of 

situations under which a filter showed improved tracking results.  

 
2.0 Kalman Filtering 
 

Developed in the 1960’s, the Kalman Filter (KF) was the first of a family of algorithms aimed at 

estimating the current state of an object. The KF is an optimal (unbiased) estimator for objects with linear 

and Gaussian characteristics, for this algorithm assumes that the object has these attributes. The basic 

theory is to predict the current state of an object, upon reception of observations, by taking the weighted 

sum of the estimate and the most recent observations.  Hence, as the general theory suggests, the 

algorithm is broken up into prediction and update stages.  

 
2.1 Algorithm 
 
Prediction 

The equations which calculate the predicted state vector and covariance matrix are: 

 

 OWNxx +⋅= ˆ~ F  (1) 

 QPP +⋅⋅= TFF ˆ~
 (2) 

 

o x̂  and x~  are the state vector 
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o P̂  and P~  are error covariance 

o F  is the state transition matrix 

o Q  is process noise covariance 

o OWN is a control vector 

 

Note that when a matrix or vector symbol is covered with a hat, the parameter represents a measurement-

updated estimate; when a matrix or vector symbol is covered with a tilde, this represents a parameter that 

is a time-updated prediction.  Therefore the initial state estimate will be represented by x̂  and the initial 

error covariance matrix will be represented by P̂ .  

 

As a recursive algorithm, the process must start with an initially defined state estimate and error 

covariance.  The elements of the state vector are the parameters that are to be estimated. While the state 

vector could include a wide range of components, when tracking ground targets the parameters of interest 

are typically the position and velocity of the object in Cartesian coordinates. A depiction of the state 

vector may appear as below.  

 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

M

&

&

y
y
x
x

x , (3) 

 

A dot above a variable indicates the first derivative of motion in that direction (also called the velocity in 

that direction).  Now, the error covariance matrix provides information about the accuracy of the state 

estimate, or can be viewed as a measure of how the components of the state vector vary with respect to 

each other. In a more mathematically thorough statement, according to the definition of state error 
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covariance, the error covariance matrix will be an ordered set of the covariance between each ordered pair 

of differences among the actual state and the estimated components of the state vector. 

 

 ])ˆ)(ˆ[(ˆ TxxxxE −−=P  (4) 

 ])~)(~[(~ TxxxxE −−=P  (5) 

 

Similarly, the process noise covariance matrix, Q , takes into account the error involved in the model that 

is chosen for the system. This error can be incorporated into the system, by making assumptions 

concerning the models chosen for the system, or as will be observed in the following section, through an 

approximation of the system parameters that does not include all higher order derivatives. 

 

The state transition matrix F is essential to understanding the Kalman Filter.  This is the matrix that, when 

multiplied by the state vector, will produce the predicted state of the object at the subsequent time step.  

Since, this research is primarily concerned with tracking and motion, the matrix that will be used most 

often in this paper is easily derived from the common kinematic equations found in physics. Yet, it should 

be noted that the KF can be applied to other applications, and therefore may have other appropriate 

transition functions.  The equations that will be used are as follows: 

 

 ...2/1 2
111 dtxdtxxx kkkk ⋅+⋅+= −−− &&&  (5) 

 ...11 dtxxx kkk ⋅+= −− &&&& , (6) 

 

The ellipses indicate the remaining derivatives of motion, with which we are not concerned due to our 

linear assumption.  Taking the coefficients of the elements of state vector, namely the coefficients of 

velocity and position, the state transition matrix can be derived from these equations as: 
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The ownship or control vector, which adjusts the prediction for a sensor mounted on a moving platform 

(such as on an aircraft or a car), is optional.  Although some refer to this as the multiplication of a 

transition matrix B and a state vector u  with components of the ownship's velocity and acceleration 

which are assumed to be known, here it will be referred to as OWN. As described, the OWN is often 

represented as:  

    
⎥
⎥
⎥

⎦
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⎢
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⋅

⎥
⎥
⎥
⎥
⎥
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⎢
⎢
⎢
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⎡
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MOM
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velocity

dt
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1
2

2

uB   (8) 

 

Update 

The update, upon the reception of a measurement, corrects the time updated estimate and error 

covariance. These formulas are derived from the minimization of the MSE of the state and the 

measurement, making the Kalman Filter an optimal estimator. The update formulas are as follows:  

      

     1]~[~ −+⋅⋅⋅= RHPHHPK TT     (9) 

     PH)K(IP ~ˆ ⋅−=       (10) 

     )xHK(zxx ~~ˆ ⋅−+=       (11) 

 

o K is the Kalman gain 

o P̂  and P~  are error covariance 
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o H is the state to measurement transformation matrix 

o z is the measurement vector 

o R  is measurement noise covariance 

o x̂  and x~  are the state vector 

 

Within the update stage, the measurement-updated estimate, which is used as an input for the next 

iteration of the filter, is calculated by taking the sum of the time-updated estimate and a weighted 

difference known as the innovation. The innovation, also called the residual, is the difference between the 

measurement z and the product xH ~⋅ . The matrix H is necessary because it transforms a vector from the 

state-space to the measurement-space. Otherwise these vectors will likely not be the same size or be in the 

same scale. Given information from N sensors centralized measurement fusion is performed in the KF as: 

TT
Sk

T
Sk

T
Skk N

HHHH ]...,,,[ ,,, 21
=  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

NSk

Sk

k

R

R
R

,

,

0

0
1

L

MOM

L

 

where NSS ,,1 K  indicates the sensor from which information is related and kR is the measurement 

covariance matrix. 

 

The weight that is calculated is known as the Kalman gain, which takes into account the variance of error 

in the estimate, P~ , and the variance of noise in the measurement, R . Notice, as the estimate error 

covariance goes to zero, the Kalman gain goes to zero, indicating that the estimate is highly reliable. This 

will result in a P̂ with similarly smaller values as P~  and a measurement-updated estimate that is very 

close to the value of the time-updated estimate. Alternatively, if the measurement noise covariance 

approaches zero, the Kalman gain gradually progresses towards the value TH . As a result, the innovation 

will be more highly weighted and the measurement-updated estimate will be farther away from the time-
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updated estimate. Notice that still in this case where the Kalman gain is larger, the error covariance is still 

being minimized. Hence, the general idea of the Kalman gain equation is that it designates how much the 

innovation will change the predicted state.  

 
2.2 Derivation 
 
Although, we have preliminary described a few of the parameters that will be used, for this derivation 
some of the terms will be defined as follows: 
 

i. Corrected Estimate:   )|(ˆ kkxx =                 
ii. Prediction:     )1|(~ −= kkxx   

iii. Measurement:    z  
iv. Weight of Prediction:   1K  
v. Weight of Measurement: 2K  

 
The corrected estimate can be written as the sum of the weighted prediction and the weighted 
measurement.  
 

zKxKx 21
~ˆ +=     (1) 

 
 
In order to proceed, it must be observed that: 
 

ε̂ˆ += xx  
    ε~~ += xx            

   vHxz +=  
 
Note that ε̂   and ε~  are estimation errors with zero means, while z is being linearized by an H matrix 
with additive, zero mean noise. Hence, substituting the above equations into equation (1), we get: 
 

 )()~(ˆ 21 vHxKxKx +++=+ εε    (2) 
 

Performing some algebraic manipulation on equation (2) yields: 
 
                            =ε̂ xvHxKxK −+++ )()~( 21 ε  
 
                               xvKHxKKxK −+++= 2211

~ε   (Distributive Property) 
 
                     vKKxHxKxK 2121

~)( ++−+= ε     (Commutative Property) 
 
          vKKxIHKK 2121

~)( ++−+= ε      (Distributive Property) 
 

vKKxIHKK 2121
~)(ˆ ++−+= εε              (3)  



9 

 
Recall, the means of all the errors are zero or in other words: 
 
    0][]~[]ˆ[ === vEEE εε  
     
Therefore, taking the means of both sides of equation (3) gets:  
 
              0])[( 21 =−+ xIHKKE  
              0][)][( 21 =−+ xEIHKKE  
    0][)( 21 =−+ xEIHKK  
 
However, since xxE =][  the above implies: 
 
    021 =−+ IHKK  
 
Solving for 1K  , it is clear that: 
 

 HKIK 21 −=      (4) 
 

 
Let KK =2 , where K is the Kalman gain. Then, it is apparent that substituting equation (4) into equation 
(1) yields: 
 
      
                KzxKHIx +−= ~)(ˆ  
      KzxKHxx +−= ~~ˆ  
      xKHKzxx ~~ˆ −+=  
         

   )~(~ˆ xHzKxx −+=                (5) 
 
Hence, equation (5) is known as the state correction equation, which corrects the prediction x~  by 
weighting the measurement in a way that minimizes the mean squared error. In order to implement 
equation (5), it is required that K be expressed in known or measurable terms. In order to do this we must, 
introduce the error covariance correction: 
   
         ]ˆˆ[ˆ TEP εε=   
 
 
In other words, the error covariance correction is the mean of the product of the estimation error and the 
transpose of the estimation error.  
 
 
Recall that ε̂   and ε~  are estimation errors with zero means, where:       
  
 

       ε̂ˆ += xx  
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       ε~~ += xx  
 
Substituting these equations into (5): 
 
           KzxKHIx ++−=+ )~)((ˆ εε   
 
Now, recall that vHxz += , yielding: 
     
            )()~)((ˆ vHxKxKHIx +++−=+ εε       
            KvKHxKHIxKHIx ++−+−=+ εε ~)()(ˆ  
            KvKHxKHIKHxxx ++−+−=+ εε ~)(ˆ      
            KvKHI +−= εε ~)(ˆ  
 
From the definition of P̂ : 
 

)}][~)(~]{([ˆ TTTT KvKHIKvKHIEP +−+−= εε  
 

})(~~)()(~~){(ˆ TTTTTTTT KKvvKHIKvKvKHIKHIKHIEP +−+−+−−= εεεε  
             

}{})(~{}~){(})(~~){(ˆ TTTTTTTT KKvvEKHIKvEKvKHIEKHIKHIEP +−+−+−−= εεεε  
Since the estimation error,ε~ , is zero mean, and v  is zero mean non-Gaussian white noise: 
   

0}~{}~{ == TT vEvE εε  
 
Hence, part of the sum cancels, resulting in: 
 

TTTT KvvEKKHIEKHIP *}{*)(*}~~{*)(ˆ +−−= εε                             (6) 
 
As previously defined: 
 

}~~{~ TEP εε=  
       }{ TvvER =  
Therefore, equation (6) becomes: 
 
      TT KRKKHIPKHIP +−−= )(~)(ˆ                                                (7) 
 
Performing some algebraic manipulation as follows: 

TTT KRKKHIPKHPP +−−= ))(~~(ˆ  
TTTTT KRKKHPKHKHPPKHPP ++−−= ~~~~ˆ  

 
Now, taking the trace of each side: 
 

)~~~~()ˆ( TTTTT KRKKHPKHKHPPKHPtrPtr ++−−=                                (8) 
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This enables us to combine some terms due to the fact that: 
 

)~()~( TT KHPtrPKHtr =  
 
Hence, equation (8) is equivalent to: 
   

)~~2~()ˆ( TTT KRKKHPKHPKHPtrPtr ++−=                                               (9) 
 
In order to simplify this equation further, we can use the fact that: 
 

0)~( =Ptr
dK
d

 

 
Therefore, an approach is to take the derivative with respect to K of both sides of equation (9): 
 

  )~2~()ˆ( TTT KRKPKHKHPKHtr
dK
dPtr

dK
d

+−=  

 

  )()~2()~()ˆ( TTT KRK
dK
dPKH

dK
dKHPKHtr

dK
dPtr

dK
d

+−=      (10) 

 
For book keeping label the parts of the above equation as: 

(A) )~( TT KHPKHtr
dK
d

 

 

(B) )~2( PKHtr
dK
d

 

 

(C) )( TKRKtr
dK
d

 

 
 

Now, note the following properties of tr
dX
d

: 

 

(i) XYXYXtr
dX
d T 2)( =  

 

(ii) TT ZYYXZtr
dX
d

=)(  

 
By property (i) equations (A) becomes: 
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            KRKRKtr
dK
d T 2)( =                 , where X  is taken as K and Y is taken as R  

 
Similarly (C) becomes: 
 

     TTT HPKHKHPKHtr
dK
d ~2)~( =  , where X  is taken as K  and Y is taken as THPH  

    
 
By property (ii) and the property )()( xxtrxxtr TT =  equations (B) is:  
 

)~2()~2( KHP
dK
dPKHtr

dK
d T=   

 
TT HPKHP

dK
d ~2)~2( =   , where Y  is taken as TP  and Z is taken as H  

 
We now have all the terms, transforming equation (10) into: 
 

KRHPHPKHPtr
dK
d TT 2~2~2)ˆ( +−=              (11) 

 
Since )ˆ(Ptr  is independent of K : 
 

0)ˆ( =Ptr
dK
d

 

 
Hence, equation (11) results in: 
 

02~2~2 =+− KRHPHPKH TT               (12) 
 
Equation (12) can be manipulated to finally yield K, the Kalman Gain: 

 
02~2~2 =+− KRHPHPKH TT  

0~2)~(2 =−+ TT HPRHPHK  
TT HPRHPHK ~)~( =+  

 
1)~(~ −+= RHPHHPK TT                (13) 

 
Now, let: 

RHPHS T += ~
                                            (14) 

 
Then the Kalman Gain is: 
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1~ −= SHPK T               (15)              
 
Now, we will go back to equation (7) in order to express P̂  solely in terms of K , H , P~ , and I  (the 
identity matrix). Recall equation (7) is:    
 

TT KRKKHIPKHIP +−−= )(~)(ˆ   
 
Using equations (14) and (15), as well as applying some algebraic manipulation: 
 
                           TT KRKKHIPKHPP +−−= ))(~~(ˆ  

       TTTTT KRKKHPKHKHPPKHP ++−−= ~~~~
 

         )~(~~~ TTTTT RKKHPHKKHPPKHP ++−−=  

                               TTTT KRHPHKKHPPKHP )~(~~~ ++−−=  

         TTT KSKKHPPKHP +−−=
~~~

 
                               PHSSSHPSHPHPPHSHPP TTTTT ~~)~(~~~~ 1111 −−−− +−−=       (16) 
Make note that: 
   TPP ~~ =       
 
      11 )( −− = SS T  
Then upon further simplification of (16), the error covariance correction equation results as follows: 
 

   PKHPHSHPPHSHPPP TT ~~~~~~ˆ 11 +−−= −−  
                               PKHPHSHPP T ~~~2~ 1 +−= −  
                               PKHPKHP ~~2~ +−=  
         PKHP ~~ −=   
                           PKHIP ~)(ˆ −=                                   (17) 
 
Now, all that is left is P~ , which can be derived from the following set of equations: 
 
   (i)  xx ˆ~ φ=  
   (ii) wxx kk +=+ φ1  
   (ii) xxk

~~
1 −= +ε  

 
The above introduces a new matrix phi, which is the state transition matrix, and w, which is a zero mean 
white noise. Applying equation (i) and (ii) in equation (iii) yields: 
   xwx k ˆ)(~ φφε −+=   
       wxx k +−= )ˆ(φ  

       w+= εφ ˆ   
Recall that the error covariance is the mean of the estimation error and its transpose. Hence, the following 
is the error covariance equation: 
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     }~~{~ TEP εε=  
         })ˆ)(ˆ{( TwwE ++= εφεφ  

     QPP T += φφ ˆ~
                             (18) 

 
Finally, the prediction equation after solution to differential equations assuming zero-mean, white process 
is: 
    
    ∫ ++= wdtxx βμφˆ~       (19) 

 
In summary, the Kalman Filter equations are: 
 
   (I)  ∫ ++= wdtxx βμφˆ~  

    
(II)      QPP T += φφ ˆ~

 
 
(III) 1)~(~ −+= RHPHHPK TT  
  
(IV) PKHIP ~)(ˆ −=  
 
(V) )~(~ˆ xHzKxx −+=  
 
(VI) vHxz +=  
 
 

2.3 Evaluation 
 
As discussed previously, the Kalman filter is an optimal filter for linear-Gaussian tracking. This technique 

does not require much space in memory since only the results of the previous time step are necessary for 

computation.  The computation itself is not complicated, so results are achieved rapidly.  It therefore finds 

extensive uses for tracking vehicles along roadway systems, or distance-oriented flight paths. 

 

However, the Kalman Filter is not applicable to nonlinear situations such as in close combat or for highly 

noisy measurements which might occur in cluttered environments, such as tracking ground transportation 

in cities.  Therefore other techniques need to be utilized for these situations. 
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3.0 The Extended Kalman Filter 
 
3.1 Theory 
 
An adaptation to the Kalman Filter that addresses nonlinear situations is the Extended Kalman Filter. This 

extension uses the same basic premise as the KF, but it assumes the local linearity of the track based on 

the definition of derivative in order to prevent divergence when attempting to track highly nonlinear 

paths.  This technique allows for more flexibility in its application.  Although it is not an optimal 

estimator, it does approximate the state to the first two moments of its Taylor series expansion. 

 

3.2 Algorithm 
 
The Extended Kalman Filter uses the same equations as the original Kalman filter, replacing the state 

transition matrix and the state-to-measurement transformation matrix with their respective Jacobian 

matrices.  These Jacobian matrices are as follows: 

 

   

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

n

mm

n

ji

x
f

x
f

x
f

x
f

f
)()(

)()(

)(

1

1

1

1

],[
xx

xx

J
L

MOM

L

                    (39) 

 

, where ],[],[ jijif F= or ],[],[ jijif H= . In many simulations, the Jacobian is computed through the actual 

derivative of the motion and transformation equations used in the simulation.  The definition of derivative 

as the limit of the following equation      

 
x

xfxxfxf
Δ

−Δ+
=

)()()('        (40) 

as xΔ  goes to zero allows for a numerical approximation of the Jacobians by replacing a small number 

for xΔ  (such as 4101 −× ). 
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3.3 Evaluation 
 
Unlike, its linear counterpart, the Extended Kalman Filter, is not an optimal nonlinear filter. The EKF is 

vulnerable to divergence due to the Taylor Series approximations of its linearization. The EKF tends to 

diverge in instances where there is high initial uncertainty in the estimate. This is not to discount this 

nonlinear approximation, for in most cases the EKF provides a sufficient approximation.  

 

4.0 The Particle Filter 
 
4.1 Theory 
 
4.1.1 Exact Bayesian Recursion 
 
The solution of the filtering problem is to estimate the state of a system given all measurements up to 

time k , or in other words to construct the posterior p.d.f )|( kk Zxp . Exact recursive Bayesian estimation 

provides a solution in two recursive steps, prediction and update. 

Prediction:  

∫ −−−−− = 11111 )|()|()|( kkkkkkk dxZxpxxpZxp  

Update: 

)|(
)|()|(

)|(
1

1

−

−=
kk

kkkk
kk Zzp

Zxpxzp
Zxp  

 
 
 
 
 
4.1.2 Sequential Monte Carlo Methods 
 
Particle filters perform recursive Bayesian estimation directly on a set of samples that approximate the 

posterior density, )|( kk Zxp . These techniques, known as Sequential Monte Carlo methods, differ from 

exact recursive Bayesian estimation, in that they do not require the exact analytic solutions of 

distributions. An approximation of the posterior, achieved through the weighted sum of the Dirac Delta 
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function, is sufficient through which to calculate interesting statistics, including the minimum mean 

squared error estimate (MMSE) of the state.  

    

 
Monte Carlo Integration & Importance 
Sampling 
(M.C. Integration) 
 

 
Particle Filtering & Sequential Monte Carlo 
Methods (S.M.C) 
 

M.C. Integration provides a method for 
evaluating a multidimensional integral by 
sampling from a probability density )(xπ . 
 

∫ ΧΧ= dgI )(  , nℜ∈Χ  

                 ∫= dxxxf )()( π  

 
While, it would be preferable to sample 
directly from )(xπ , this is not always 
possible. When sampling directly is not an 
option, a Monte Carlo estimate is still 
feasible given that an importance density that 
is similar to )(xπ can be easily sampled and 
appropriately weighted. 
 

∫= dxxq
xq
xxfI )(
)(
)()( π

 

 
The integral approximation achieved by 
taking N independent samples from 

)(xq becomes: 

∑
=

=
N

i

ii
N xwxfI

1

)()(  

)( ixw  are the normalized importance 
weights: 

∑
=

Δ

Δ

=

=

N

j

j

i
i

i

i
i

xw

xwxw

xq
xxw

1
)(~

)(~
)(

)(
)()(~ π

 

An estimate of the state of a system can be 
attained from: 
 
 

∫= kkkkkk dxZxpxfZxfE )|()(]|)([  

 
 
 
In all but the more restrictive cases, it is not 
possible to sample directly from the posterior 
density, as a conceptual solution for the 
propagation of this density does not have a closed 
form solution or maybe be computationally 
expensive to generate [17]. Therefore, importance 
sampling is applied and an importance or 
proposal density is chosen: 
 

∫= kkk
kk

kk
kkk dxZxq

Zxq
Zxp

xfZxfE )|(
)|(
)|(

)()]|)([  

Sampling from the proposal density, the 
Sequential Monte Carlo estimate is: 

∑
=

=
N

i

i
k

i
kkk xwxfZxfE

1

)()()]|)([  

)( i
kxw are the normalized weights:  

∑
=

Δ

Δ

=

=

N

j

j
k

i
ki

k

k
i
k

k
i
ki

k

xw

xw
xw

Zxq
Zxp

xw

1

)(~
)(~

)(

)|(
)|(

)(~
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4.1.2.1 Computation of Importance Weights 
 
The importance weights are defined as a ratio of the posterior and the importance density. In order to 

construct an implementation of the particle filter one must simplify this ratio into quantities that are 

known and can be numerically computed.  

 
(I) Defined by Monte Carlo Integration: 

    
)|(
)|(

)(
k

i
k

k
i
ki

k Zxq
Zxp

xw =       

 
(II) Simplify the joint posterior density: 
     )|( kk ZXp  
 

a. Applying Bayes’ Theorem:  
 

    
)(

)()|(
)|(

k

kkk
kk Zp

XpXZp
ZXp =  

b. Employ Markov Chain Property: 
 

)|(
)|()|(),|(

)|(
)|,(),|(

)|(
)|(),|(

),(
)(),(

)|(

1

1111

1

111

1

11

1

1

−

−−−−

−

−−−

−

−−

−

−

=

=

=

=

kk

kkkkkkk

kk

kkkkkk

kk

kkkkk

kk

kkk
kk

Zzp
ZXpXxpZXzp

Zzp
ZXxpZXzp

Zzp
ZXpZXzp

Zzp
XpZzp

ZXp

 

 c. The states are propagated through a Markov process: )|()|( 11 −− = kkkk xxpXxp   
                 The observations are independent given the states: )|(),|( 1 kkkkk xzpZXzp =−   
      The joint posterior reduces to: 
   

  
)|(

)|()|()|(
)|(

1

111

−

−−−=
kk

kkkkkk
kk Zzp

ZXpxxpxzp
ZXp  

 
 
 
(III) Combining (I) and (II): 
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)|()|(

)|()|()|(
)(

1

111

−

−−−=
kkk

i
k

k
i
k

i
k

i
k

i
kki

k ZzpZxq
ZXpxxpxzp

xw  

 
(IV) Let the importance density factorize such that  
  
              )|(),|()|( 111 −−−= k

i
kk

i
k

i
kk

i
k ZxqZxxqZxq     

   
      Then the weight equation becomes: 
 

 
),|(

)|()|(
)(

1

1

k
i
k

i
k

i
k

i
k

i
kki

k Zxxq
xxpxzp

xw
−

−= * 
)|(
)|(

11

11

−−

−−

k
i
k

k
i
k

Zxq
Zxp

*
)|(

1

1−kk Zzp
   

 
(V) Finally, it is clear that: 
 

                   )( i
kxw   α  

),|(
)|()|(

)(
1

1
1

k
i
k

i
k

i
k

i
k

i
kki

k zxxq
xxpxzp

xw
−

−
−   

 
   
 
 
The mathematical formulation above defines all parameters in terms of probability densities. 

o Likelihood )|( kk xzp→  

o Transition Density )|( 1−→ kk xxp  

o Importance Density ),|( 1 kkk zxxq −→  

A look at what these densities mean in terms of known statistics will reveal that these densities can be 

represented as integrals and are defined by the system and observation models, as well as known noise 

statistics.  

 
4.1.2.1.1 Likelihood  

 
The likelihood characterizes how well the available measurement kz corresponds to the given 
prediction kx .  “The conditional PDF of kz  given kx , )|( kk xzp , is defined by the measurement 
model and the known statistics of observation noise, kv ” [10]. 
 

   kkkkkkkk dvvpvxhzxzp ∫ −= )()),(()|( δ    
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The equation ),( kkk vxh  is known as the observation equation. This function, which is a known model, 
relates the measurements to the state vector.  
 
Derivation of Likelihood Equation 
 
(I) Integration allows the likelihood to be written as: 
                            

)|( kk xzp  = ∫ kkkk dvxvzp )|,(  

(II) Applying Bayes’ Theorem: 
 

∫= k
k

kkk
kk dv

xp
xvzp

xzp
)(

),,(
)|(  

 
(III) Implementing the Markov Chain Rule produces the following manipulation: 
 
                   ∫= kkkkkkkk dvxvpxvzpxzp )|(),|()|(  

 
(IV) Assume kv  is independent of kx , that is the observation noise is independent from past and 
current states, then )()|( kkk vpxvp = and the likelihood becomes equivalent to: 

           )|( kk xzp  ∫= kkkkk dvvpxvzp )(),|(  

 
(V) Manipulating as to incorporate the Dirac Delta function: 
      
             Note that: 
 

⎩
⎨
⎧

≠
=

=
kkkk

kkkk
kkk zxvhwhen

zxvhwhen
xvzp

),(0
),(1

),|(  

 
       Hence, it follows that: 
 
 

),|()),((lim
02

kkkkkkk xvzpxvhz
kv

=−
→

δ
σ

 

 
       Applying the above notion to (IV) gives the following result: 
 

kkkkkkkk dvvpvxhzxzp ∫ −= )()),(()|( δ  

 
       The computation of the likelihood is dependent upon the probability of observation  
                  noise, as indicated by the derived equation.     
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There may not generally be only a concern with utilizing information from a single sensor. The extension 

to a multiple sensor problem is not difficult. Under the assumption of N independent sensors, centralized 

measurement fusion in the PF is simply computed by: 

)|(
1

k
j

k

S

j
xzp

N

=
∏  

 
4.1.2.1.2 Transition Prior 

The transition prior describes the evolution of the state. Where the likelihood is defined by the 

observation equation and known measurement noise, the transition prior )|( 1−kk xxp  is defined by the 

known system equation ),( 111 −−− kkk wxf  and process noise kw . A mathematical representation of the 

transition prior, which can be derived in the same manner as the likelihood, takes on the form: 

  

111111 )()),(()|( −−−−−− ∫ −= kkkkkkkk dwwpwxfxxxp δ  

 

4.1.2.1.3 Importance Density 

The proposal density ),|( 1 kkk yxxq −  is a design choice involved in the implementation of a particle 

filter. In choosing a proposal density one would want a density as similar to the posterior as possible. 

However, the Monte Carlo Method only requires that the proposal and posterior have the same support. 

That is, particles that are associated with a probability greater than zero in the posterior should also be 

greater than zero in the proposal.  

 
4.1.2.1.3.1 Transition Prior Proposal 

 
The most commonly used proposal distribution is the transition prior )|( 1−kk xxp . Selection of the 

transition prior as the proposal density transforms the generic Sequential Importance Sampling algorithm 

into the algorithm known as the Bootstrap Filter. The prior is a popular choice, for it is easy to implement, 

causing the weight computation to reduce to a computation of the likelihood.  

 
)|(1 kkkk xypww −=  

 
The decision to choose the prior as the sampling proposal disregards the fact that the proposal should take 

into account the most recent observation. As a result, the filter may potentially breakdown when the prior 

and likelihood do not overlap. Essentially, the likelihood weights improbable particles more highly than 

probable particles. 
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Above image is from http://cslu.cse.ogi.edu/publications/ps/UPF_CSLU_talk.pdf . This image illustrates 
the likelihood and prior disagreement that can lead to sample degeneracy.  
 
 
4.1.2.1.3.2 Alternative Proposals  
 
Alternatives to the transition prior proposal include using other fusion algorithms as the proposal density, 

including the EKF and Unscented Kalman Filter (UKF).  These approaches may be favored, as they take 

into account the current measurement. However, using these proposals is both computationally more 

complex and as a result requires longer processing time.  

  
 
4.1.2.2  Resampling 
 
Resampling is the final step of an iteration of the particle filter. Without the resampling step, the 

algorithm so far derived is known as Sequential Importance Sampling (SIS). The resampling step 

becomes a necessity due to the fact that one must choose an importance density and not sample directly 

from the posterior. As a result of the inability to sample directly from the posterior, the variance of the 

weights increases over time, resulting in a phenomenon known as the Degeneracy Phenomenon. 

Essentially, this phenomenon causes the number of effective particles to decrease over time and may after 

many iterations result in only one particle with non-negligible weight. Hence, to prevent this degeneration 

resampling reselects particles with high importance weights. The following figure illustrates the 

resampling method for the reselection of particles with higher importance weights.  

 

 
4.1.2.2.1 Resampling Schedules  
 
(I) Deterministic resampling describes a schedule with fixed, interval times ( ,..., 21 tt ). 

http://cslu.cse.ogi.edu/publications/ps/UPF_CSLU_talk.pdf
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(II) Dynamic scheduling is done when the effective number of particles is less than a predetermined 
threshold number.   

 
 

4.1.2.2.1 Resampling Schemes 
 
4.1.2.2.1.1 Systematic Resampling 
 

Systematic Resampling is the computationally easiest resampling scheme. This ease comes from the fact 

that it uses the simple uniform distribution. The following equation is implemented when performing 

systematic resampling: 

 

1) U
n

iU i +
−

=
1

, where U is a single random drawn from ((0,1/n]) and ni ,,1K= . 

  

The iU is the thi  uniform sample. That is, the above equation randomly describes n uniform samples on 

the interval (0,1]. This sample is created by first drawing a random number on the interval (0,1/n]. The 

remaining uniform samples are then generated by adding 
n

i 1−
 to the randomly sampled U. Now, re-

index the thj  particles based on the n thi uniforms.  

 
Even though the systematic resampling scheme is most popular due to the easy computation of a uniform 

distribution, other methods of resampling have been developed. The main differences between these 

resampling schemes are the distributions used to re-index the sample set.  

 
4.1.2.2.1.2 Multinomial Resampling 
 
In multinomial resampling, the duplication count of the thj particle is determined by a multinomial 
distribution. That is, mNN ,,1 K are distributed according to the multinomial (n; mww ,,1 K ). 

 
Process: 

1) Draw n independent uniforms { iU  }, ni ≤≤1 on the interval (0,1]. 

2) Set )( iinv
w

i UDI = and 
)(' iinv

w
i UDIi ξξξ == , where inv

wD  is the inverse of 
the cumulative distribution function associated with normalized weight, that is,  

iuD inv
w =)(  for ],(

1

1

1
∑∑
=

−

=

∈
i

j

j
i

j

j wwu . 
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4.1.2.2.1.3 Residual Resampling (Remainder Resampling) 
 

       1) Residual resampling is determined by the following equation: 
  

⎣ ⎦ jjj NnwN +=  
 

jN : total number of times the thj particle is duplicated 
jN  : generated according to a multinomial distribution ),,;( 1 nwwRnMult K−  

R : the sum of the integer part of the product of  the total number of particles and the weight of 
the 

 thj  particle ( ⎣ ⎦∑
=

n

j

jnw
1

) 

jw : ⎣ ⎦ ni
Rn
nwnw jj

,...,1, =
−
−

 

⎣ ⎦jnw :  integer part of the product of the total number of particles and the weight of the thj  
particle. 

 

4.2 Generic Particle Filter (Pseudo code) 
 

• Initialization: 
- Draw N particles from a known initial distribution )( 1xp  

 
• Update: 

- Upon receiving a measurement, evaluate the importance weights according to:  

     iw1   =  
)|(

)()|(

11

111

yxq
xpxyp

i

ii

 

  
- Normalize importance weights: 
 

  
i

w1   =  

∑
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N

j
j
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11
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- Calculate Number of Effective Particles 
 
- If the number of effective particles falls below a threshold (IF threff NN 〈 ) 
  Resample using a chosen Algorithm 
 

• Prediction: 
FOR Ni :1=  
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- Draw ),|(~ 1 k
i
k

i
k

i
k yxxqx − by passing particles obtained after resampling through 

proposal density (Note: In the bootstrap filter, one would pass the particles through the 
system equation to draw these i

kx  particles.) 
 

• Update: 
- Upon receiving a measurement, evaluate the importance weights according to:  

     i
kw   =  
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- Normalize importance weights: 
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- Calculate the number of effective particles 
- If the number of effective particles falls below a threshold (IF threff NN 〈 ) 
   Resample using a chosen Algorithm 

 
 
5.0 Experiments 
 
5.1 Maneuvering Targets 
 
The algorithms described thus far are implementations using a single dynamic model. For tracking 

applications, a single model algorithm may not fully capture the true motion of a target. While, targets 

may move with a constant velocity for a period of time, a target may at a different time execute a turn, or 

in other words maneuver. In order to account for the varied motion, algorithms that implement multiple 

modes that are modeled as a Jump Markov System (JMS) are used.   

  
5.2 System Models 
 
The motion of the target is described at a given time instance by one of three dynamic models. The three 

models of target motion used are: (1) Constant Velocity Model (CV) (2) Clockwise Coordinated Turn Model 

(CT) (3) Counterclockwise CT Model. These three models are used in a switching manner to simulate a 

maneuvering target, where a regime variable 

}3,2,1|3,2,1{ CTckwiseCountercloCTClockwiseCVrk ===∈  
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is used to account for the current mode at discrete time index k. The switching between models follows 

transitions given by a Markov chain with transition probabilities })3,2,1{,(,}|Pr{ 1 ∈=== + jiirjr kkijπ , such 

that ∑ =≥
j

ijij 1,0 ππ . The evolution of the states kx  can then be described as   

            kk
r

k Gwxf k += − )(x 1
)(    

 

where the state vector kx is defined as [ ]yxyxk &&=x , kw is the Gaussian process noise with 

covariance matrix IqQ *= , where I is an identity matrix and q is a scalar , and  
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with T defined as the sampling interval. The discrete time instances where the state evolves according to 

the CV model with regime 1=kr  can be gotten by replacing )( 1
)(

−k
r xf k  with the transition matrix:  
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For evolution of the state with a constant turn rate the transition matrices are 
 

3,2,

)*cos()*sin(00
)*sin()*cos(00

)*sin()*cos(1(
10

))*cos(1()*sin(
01

)x(

)(

)()(

)(

)(

)(

)(

)(

)(

)(

)(

)( =

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−

= j

TOTO
TOTO

O
TO

O
TO

O
TO

O
TO

F

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

j
k

k
j  

 
with clockwise and counterclockwise turn rates given by 
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where ma is a constant maneuver acceleration parameter.  
 
5.2.1 Interacting Multiple Model EKF (IMM-EKF) 
 
The multiple dynamic models are implemented in the IMM-EKF as a process of interaction, filtering, and 

combination of outputs. The interaction begins each iteration of the algorithm by mixing the outputs from 

the previous step based upon the previous mode probabilities ijπ . Next, the inputs, derived from a single 

EKF with associated dynamic model, are filtered, resulting in both updated model probabilities and new 

inputs for the next step. Finally, the current model probabilities are used to compute a weighted average 

of the outputs from the individual filters, resulting in a combination and an estimate for discrete time 

step k .  

 

5.2.2 Multiple Model PF (MM-PF) 
 
The alterations in the MM-PF compared to the original algorithm are not drastic and do not significantly 

increase the computational complexity of the regular SIR algorithm. The added computations involve the 

determination of the regime variable for each of the n particles at discrete time step k . The mode is 

computed based upon: if ir n
k =−1  and ]1,0[~ Uun , then }|}3,2,1{{ mrm n

k =∈ such that: 

∑∑
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−

=

≤<
m

j
ijn

m

j
ij u

1

1

1
ππ . The particles are then propagated through the filter and predictions are 

determined that take into account the regime variable selected.  

 
 
5.3 Measurement Models 
 

The implemented simulation employs the ability to select sensors of four types that provide the following 

types of measurements: 1) Bearings Only 2) Range Only 3) Range and Bearings 4) Range, Elevation, and 

Azimuth. The measurement model described as 

kk
ij

k vxhz += )()(  

where kv  is the measurement noise, can employ any of j sensors with 4,,1K=i measurement models. 

The measurements models for the sensors can take any of the following forms: 
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where ),,( jjj sss zyx is the position of sensor j .  

 
5.4 Measures of Performance 
 

Evaluations of the PF and EKF algorithms were primarily based upon average mean squared error (MSE) 

and variance (V) over separate Monte Carlo Runs.  The mean squared error and variance computations 

are: 
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5.5 Simulations 
 
Comparison of the EKF vs. PF depends on several factors including:  sensor position, “q”, and number of 

particles used in the particle filter. 
 

Sensor position can degrade overall tracking performance for both EKF and PF.  Overall tracking 

performance refers to RMSE and variance.  A high tracking performance is described as having low 

RMSE and low variance.  Performance is degraded when the sensors are not lined up normal to the target 

track.  When the sensors are lined up in parallel with the direction of motion of the target, performance is 

minimized. 
 

In this simulation, overall tracking performance was at a minimum when:  1) the two sensors were 

positioned side by side on all four sides of the target’s track; 2) the two sensors were positioned on 

opposite sides of the target track parallel with the target’s motion.  Alternatively, tracking performance 

was maximized when either:  1) one or more of the sensors were positioned close to the target track so at 

no time during the simulation was the sensor in parallel with the target’s motion; 2) the two sensors were 

positioned at right angles on the outside of the target tack ensuring at least one sensor was normal to the 

target at all times.   
 

In the two cases mentioned previously where performance is minimized, the EKF outperformed the PF in 

nearly every situation.  Despite the EKF’s performance over the PF in this sensor setup, it is important to 

remember the RMSE and the variance were still very large. 
 

When the sensors are positioned so that performance is maximized the results weren’t as one-sided 

toward the EKF as when the sensors were positioned poorly.  A noticeable trend emerged from this sensor 

setup.  The PF outperformed the EKF whenever “q” was set to 
6106.1 −×  no matter how many particles 

were used (50, 100, 500).   
 

When the PF was set to 50 particles in this performance maximization sensor setup, the EKF showed 

better performance for the “q” values of 0.5, 1, and 5.  As the number of particles increased, the 

performance of the PF increased (with the exception that simulation time increased dramatically as a 

result from more computational complexity).  When the number of particles was increased to 100 the 

EKF outperformed or did just as well as the PF with the exception of when “q” was set to 
6106.1 −×  as 

mentioned above.  Once the number of particles was set to 500 the PF either outperformed or did just as 

well as the EKF.   
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Examples of Poor Sensor Alignment 
 
 
 

 
Figure 1.  Two sensors positioned side by side. 

 
 
 
 
 

 
Figure 2.  Two sensors positioned on opposite sides of the target track. 
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Examples of Proper Sensor Alignment 
 

 
Figure 3.  At least one sensor positioned close to the track path. 

 
 

 
Figure 4.  Both sensors positioned close to the track. 

 

 
Figure 5.  Sensors positioned at right angles centered on the target track. 
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Typical Results with Poor Sensor Alignment 
 

 
Figure 6.  Average tracks of 100 Monte Carlo simulations displaying typical results with the two sensors 
positioned on opposite sides of the target track. 
 
 

 
Figure 7.  Average tracks of 100 Monte Carlo simulations displaying typical results with the two sensors 
positioned side by side. 



33 

Effects of “q” and the Number of Particles with Properly Aligned Sensors 
 
 

 
Figure 8.  Average tracks of 100 Monte Carlo simulations with q = 6106.1 −× and the number of particles set 
to 50. 
 
 

 
Figure 9.  Average tracks of 100 Monte Carlo simulations with q = 5 and the number of particles set to 50. 
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Figure 10.  Average tracks of 100 Monte Carlo simulations with q = 6106.1 −× and the number of particles 
set to 100. 
 
 

 
Figure 11.  Average tracks of 100 Monte Carlo simulations with q = 5 and the number of particles set to 100. 
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Figure 12.  Average tracks of 100 Monte Carlo simulations with q = 6106.1 −× and the number of particles 
set to 500. 
 
 

 
Figure 13.  Average tracks of 100 Monte Carlo simulations with q = 5 and the number of particles set to 500. 
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6.0 Chief Scientist Briefing Results 
 
 
On August 30, 2007, a briefing was given by Mark Alford to the Chief Scientist of AFRL/IF, Dr. John S. 

Bay.  The following is a summary of that briefing. 

 

The overall in-house program is being referred to as “Fusion Techniques and Non-Linear Filtering 

(FTNLF).”  This overall program encompasses past and future in-house efforts along with component 

contractual efforts.  The outline of the briefing consisted of going over the purpose, particle filtering, and 

progress, followed by a discussion of the major in-house efforts and then the component efforts, followed 

by conclusions and future directions. 

 

The primary purpose of the FTLNF In-House Program is to investigate and develop promising innovative 

technologies that hold promise for improvements in Air Force target tracking and multi-sensor fusion 

capabilities.  Current permanent staffing is shown in the following organizational chart. 

 
 

 
Figure 14.  In-House FTLNF program staffing 

 
Also, there are typically two summer students hired each year to help support this program.  In the 

summer of 2007, Christopher Poore and Becky Bailey worked on nonlinear filtering techniques, and their 

reports are included in the Appendices of this report.  There is also University/Contractual support 

through Dr. Pramod Varshney, Syracuse University, Black River Systems Company, and Numerica 

Corporation.   

 

Figure 15 shows an overview of the fusion scenario. 

 

Lead: Mark Alford 

Maria Scalzo 
Mathematician /  
Computer Scientist 

Eric Jones 
Electrical Engineer 

Adnan Bubalo 
Computer Scientist 
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Figure 15.  Overview of the Fusion Scenario 

 
Multiple assets are shown conducting surveillance over the ground, air, space and sea.  Some have 

overlapping coverage, some do not.  This shows the idea of sharing information between platforms and 

with ground and space based systems.  These platforms and systems are monitoring events in both war 

and peace time environments.  Examples of events are the fires on the ground.  Terrain features are also 

important in this scenario.  Both centralized and decentralized fusion centers are being employed. 

 

The problem statement is that Nonlinear Non-Gaussian Processes (NNGP) present a major challenge in 

all types of military problems.  This is because the real-world is nonlinear and non-Gaussian, despite 

assumptions made in most conventional fusion algorithms.  The FTLNF In-House program is addressing 

this problem by researching and developing tracking filters that do not presume a linear Gaussian world.  

Perhaps the most famous of these is the particle filter.  The theory behind particle filtering has been 

around for a long time, namely in the form of Monte Carlo Markov Chain based approaches, however, it 

resurfaced with the name particle filtering in 1993 with Neil Gordon’s thesis referenced in [10].   
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Figure 16 depicts an urban clutter picture which shows how nonlinear things can be.  Imagine a target 

moving through this environment.  Clearly this is a nonlinear environment.  With a little imagination, you 

can almost tell that it is non-Gaussian as well.  Consider a camera, radar, infrared sensor, unmanned aerial 

vehicle (UAV), or other sensing device overlooking this scenario.  The question is, how do we discern 

critical situations in this sort of environment.  This is exactly where it is expected that new nonlinear 

filtering techniques will help. 

 
Figure 16.  Urban Clutter Nonlinear Environment 

 
The particle filter is the focus of the FTNLF research.  Particle Filtering holds great promise to provide 

enhanced capability for non-linear, non-Gaussian tracking conditions.  Considerable work is required to 
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verify the situations where the Particle Filter will provide improved performance.  Developing tools and 

techniques to investigate Particle Filter performance relative to other filtering techniques is a major 

emphasis of the effort under the FTNLF In-House program.  Other non-linear filters are also being 

investigated for comparison purposes to determine the conditions under which they represent a better 

choice than the particle filter. 

 

 
Figure 17.  Particle Filter: A Block Diagram 

 
Figure 17 shows a block diagram of the particle filter.  The input is the probability density function (pdf) 

of the target state x consisting of position, velocity, acceleration, jerk and other attributes.  The pdf goes 

through the state update equation to propagate the initial state (prediction step) from previous time step k-

1 up to time k.  A measurement comes in consisting of, for example, range-bearing or bearings only from 

a radar, infrared, or Electronic Support Measures (ESM) sensor.  This measurement is passed through the 

measurement equation to form a likelihood that measurement y was generated by state x.  The weighted, 

updated pdf is then resampled.  When this measurement updated density is formed, the mean is calculated 

to create the track.  The whole process is then repeated for the next time step and measurement update.   

 

The FTNLF In-House program progress in Particle Filter investigation, development, and verification has 

focused on the development and utilization of a simulation capability including: 

1. Development of a MATLAB simulation capability in coordination with Syracuse University 

2. Preliminary investigation of Particle Filtering capabilities 
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Figure 18.  FTNLF In-House Program Timeline 

 
Figure 18 shows a timeline of the in-house programs comprising FTNLF.  The first program was 

Complementary Advanced Fusion Exploration (CAFÉ) which was a study to identify promising types of 

algorithms that could aid in problems of advanced fusion and tracking.  It was found that Particle Filtering 

was an area that was not being worked within the Information Directorate at Rome, and was chosen as an 

area for detailed examination.  A final report was published for CAFÉ and a small examination of particle 

filtering was done.  It showed that the particle filter outperformed the extended Kalman filter for 

nonlinear trajectories and Rayleigh Noise.  In fact, it was found that the Unscented Particle Filter (UPF) 

outperformed the Unscented Kalman Filter (UKF) and the Particle Filter.   

 

The follow-on to CAFÉ was Development and Evaluation of Fusion Techniques (DEFT) whose objective 

was to understand the Particle Filter in more depth.  The result was the development of a particle filter to 

compare to Extended Kalman filters with some preliminary scenarios and evaluation.  The Multi-INT 

Particle Filter Minigrant was an outgrowth of DEFT.  DEFT developed a two-dimensional particle filter 

for in-house testing and analysis.  Other programs initiated under DEFT were the In-House Particle Filter 

Analysis and Testing (IHPFAT) fallout money program and another Minigrant to do Image Based 

Particle Filtering.  IHPFAT has the objective of combining the kinematic and particle filter with the 

Baseline Road Assisted Tracker developed by Black River Systems Company.  Additionally, Black River 
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was tasked with helping AFRL with appropriate scenario development.  Once these software tools are 

integrated, the idea was to manually swap filtering modules and perform test and evaluation in more 

complex and dynamic situations.  The Image Based PF Minigrant is just getting under way, so not much 

progress has been made, but the idea is to use a particle filter to track objects in video. 

 

Tracking Evasive Nonlinear Targets is a new two year In-House program to perform analysis and 

enhancements based on lessons learned under previous efforts.  The ultimate goal is to develop and 

automate an Adaptive Nonlinear Tracking System (ANTS) for filter swapping/parallelization based upon 

situation.  It is also a goal to enhance/mature Image Based Particle Filtering from the second Minigrant.  

 

Under DEFT there were some accomplishments that lead to the conclusion that particle filtering has 

promise.  DEFT developed a two-dimensional particle filter for in-house analysis and testing.  Under 

DEFT, the team performed Monte Carlo simulation runs to test the performance of the Particle Filter (PF) 

as compared to the EKF for multiple bearings only sensors (ESM sensors).  A comparison was made of 

tracking error variance based on Root Mean Square (RMS) position error.  Sample results (where the PF 

outperformed the EKF) are shown in Figures 19 and 20. 

 
Figure 19.  DEFT Simulation Conditions: 2 ESM Sensors 

 

-------------- 
Experiment 007 

-------------- 
Experiment number 7 in series of 15. 
Number of particles: 50 
Number of runs: 100 
Number of time steps: 60 
Active Sensors    Type     x pos    y pos  glint 
probability   
4                       1        30        -50      0.0 
5               1         0         -100    0.0 
Number of active sensors:  2 
Maneuverability variable q: 1.600e-005 
PF lost track 0 times out of 100, or 0.00% of the 
time. 
EKF lost track 28 times out of 100, or 28.00% of the 
time. 
      AvgTime/Time_Step       Avg RMSE      Variance 
PF         0.0417                     1.795               3.000 
EKF       0.0042                     3.449              47.631 
Processing took  9.91 times longer for PF than for 
EKF. 
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Figure 20.  Results: variance is much less for PF than EKF 

 
Figure 7 shows that the tracking error variance is much better for the PF than the EKF, requiring 10x as 

much processing time.  The result is for 50 particles, 100 Monte Carlo runs, two bearings only sensors.  

The EKF lost track 28% of the time whereas the PF did not lose track at all.   The variance and RMSE 

versus average computation time per time step are compared in Figure 6.  Use of High Performance 

Computers (HPCs) is being worked with IFTC. 

 

The follow on effort to DEFT is TENT.  TENT will develop tools and techniques such as automated filter 

selection and improved tracking for nonlinear: target motion, platform motion, and sensor dynamics.  

TENT will investigate the applicability of image based tracking, enhance existing algorithms, and 

leverage contributing technologies such as Multi-INT Particle Filtering.   
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Figure 21.  TENT Quad Chart 

   
 
    A quad chart for TENT is shown in Figure 21.  The TENT objectives are Nonlinear Development and 

Enhancements, Tracker that employs a combination of nonlinear filters and enhance and mature image 

based tracking.  The overarching theme is to increase track lifetimes by developing fusion techniques 

resilient to evasive maneuvers. 

 

Description: 
 This in-house effort will develop tools and 

techniques to automate filter selection to improve 
tracking by reducing susceptibility to non-
linearities in target motion, platform motion, and 
sensor dynamics.  It will also investigate the 
applicability of image based particle filter tracking 
as well as enhancing existing algorithms. 
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Figure 22.  TENT Objectives 
 
 

The Multi-INT Particle Filtering Minigrant was performed in-house in conjunction with Syracuse 

University.  The final report is included as an appendix to this report.  A quad chart for that effort is 

shown in Figure 23. 

 

TENT Objectives 

• Nonlinear Filtering Development and Enhancements 

– Analyze effects of update rates and realistic scenarios that 
present varying degrees of nonlinearities 

• Tracker that Employs a Combination of Nonlinear Filters 

– Enhance nonlinear filtering by adaptively switching or 
parallelizing between algorithms based upon characteristics, 
performance and constraints of a situation 

• Enhance and Mature Image Based Tracking 

– Integrate image particle filtering with existing Multi-INT PF 

–  capability 
 

Increase track lifetimes by developing fusion 
techniques resilient to evasive maneuvers 
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Figure 23.  Minigrant Quad Chart 

 

 

The purpose of the Multi-INT Particle Filtering Mini-Grant was to establish a means of fusing data from 

Multiple Intelligence sources using Particle Filtering as a basis.  Traditional methods of data fusion 

involved extensive use of the Kalman Filter.  The basic Kalman Filter made the assumptions that the 

underlying processes were linear and Gaussian.  For example, Electronic Intelligence (ELINT) and 

Imagery Intelligence (IMINT) information require consideration of the probabilistic characteristics of the 

underlying sources of those types of information.  It can safely be said that the underlying processes are 

nonlinear and non-Gaussian.  Particle Filters were typically focused on the single information source 

tracking problem.   No attempt had been made to combine the state estimation capabilities of Multi-INT 

information using Particle Filters.  Investigation of the feasibility of using Particle Filtering as a basis for 

Multi-INT fusion was accomplished by developing a MATLAB simulation and experimenting with 

promising sensor configurations.  Progress was made in a number of areas including: 
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1. Established an in-house software simulation capability to do particle filtering 

2. Established a baseline approach for testing particle filtering algorithms in-house 

 
 
Several conclusions have been reached as a result of FTNLF effort thus far.  The problem of non-linear 

non-Gaussian behavior is a difficult problem that cannot be addressed through conventional methods.  

Investigation of Particle Filtering and other recent innovations in non-linear filtering has show promise.  

Considerable study is necessary to reach conclusive results based on algorithm performance.  Current and 

future work is focusing on developing sufficient tools and understanding of the mathematical nature of 

non-linear filtering techniques to fully determine the conditions under which these techniques will lead to 

improved performance. 

 

This work has also pointed to some future directions.  One of the key areas that needs to be investigated is 

the application of Measures (or Degrees) of Nonlinearity (MoN, DoN) to determine when it make sense 

to use a specific type of nonlinear filter (e.g. PF).  Also required is the investigation into specific types of 

scenarios that would dictate the use of new nonlinear filtering techniques.  Once this is established, the 

next step is implementation of a wide variety of nonlinear filtering techniques within a software suite for 

further investigation and experimentation.  Finally, extensive documentation of results and conclusions 

from using the experimental suite is required. 
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Appendix I.  Multi-INT Particle Filtering Minigrant report 
 
 

Particle Filtering Experimentation 

 

Summary 

This project develops several data fusion and target tracking algorithms for a surveillance system that 

consists of multiple heterogeneous sensors. Algorithms based on the classical extended Kalman filter 

(EKF) and on the emerging non-Gaussian and nonlinear particle filtering (PF) techniques have been 

implemented. These algorithms have been tested in the practical case where a target maneuvers from time 

to time and an Interacting Multiple Model (IMM) framework is used.  We have also tested them in the 

presence of glint noise.  Changes in the aspect toward the radar can cause irregular electromagnetic wave 

reflections, resulting in significant variation of radar reflections. This phenomenon gives rise to outliers in 

angle tracking, and it is referred to as target glint. We adopt a commonly used model for glint noise, the 

Gaussian mixture model. This model consists of one Gaussian with high probability and small variance 

and another with small probability of occurrence and very high variance. 

The performances of the EKF and the particle filter have been compared through extensive simulation 

experiments. The results show that for highly non-linear measurements, such as those from multiple 

bearing-only sensors, particle filter exhibits a superior data fusion and tracking performance than the 

EKF. However, if the system receives measurements from a radar (both bearing and range 

measurements), the EKF and the PF have very similar tracking accuracy, and the EKF is a more desirable 

choice, considering that it requires much less computation than the PF, and has a much easier real-time 

implementation.      

Index Terms 

Target tracking, Particle Filter, Extended Kalman Filter (EKF), Interacting Multiple Model (IMM), glint 

noise, Gaussian Mixture Model (GMM), sensor networks 

I. INTRODUCTION 
 
Combining the information from multiple heterogeneous sensors can lead to more accurate tracking 

results than using a single sensor. To fuse these heterogeneous and non-linear measurements, there are 

many tracking algorithms, of which the most commonly used is the classical method called the extended 

Kalman filter (EKF) [1], where the non-linear measurement model and/or nonlinear motion model are 

linearized via Taylor series expansion, and the noises are approximately assumed Gaussian. On the other 
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hand, a Monte-Carlo simulation based recursive estimation algorithm, the particle filtering (PF) algorithm 

[2, 3] has emerged as a very promising technique to solve the non-linear and non-Gaussian filtering 

problem. It has been shown that using highly nonlinear measurements, such as bearing-only 

measurements, the PF outperforms the EKF [2].  

Here in this project, we compare the tracking performance of the EKF and the PF under various 

situations, where different combinations of sensor measurements are available for data fusion. Different 

types of sensors are considered, including range-only sensors, bearing-only sensors, and radars that 

provide both range and bearing measurements. Besides the non-linearity in the measurements, non-

Gaussian measurement noise, the glint noise modeled as a Gaussian mixture, has been used in the 

experiments. In addition to the relatively easy case where the target moves at nearly a constant velocity, 

we investigate the difficult case where targets maneuvers and an IMM algorithm has to be used.  Through 

simulation experiments, we demonstrate that the particle filter has superior performance during the first 

several steps after initialization. In steady state, when the data are highly nonlinear bearing-only 

measurements, the PF still outperforms the EKF.  However, whenever radar data are available, the PF has 

very similar steady-state performance as the EKF in terms of MSE.  

 

II. SENSOR NETWORK SETUP 
 
Since multiple heterogeneous sensors are connected to form a sensor network, it is very important to take 

advantage of the information from multiple sources. Here we adopt one of the most common data fusion 

schemes, namely the centralized fusion scheme.  In a centralized fusion process, all the sensors transmit 

their raw measurements, such as range, and bearing to the fusion center, as shown in Fig. 1. After 

collecting all these measurements, the fusion center fuses them to form a new and more accurate estimate 

of the target state. The fusion is accomplished by the tracker in a very natural way. Namely all the raw 

measurements and their associated accuracies are used to update the target state. The tracker only needs to 

adjust its measurements equation to reflect that measurements are from multiple heterogeneous sensors. 

The centralized fusion scheme is optimal in the sense that no information is lost during the fusion process, 

since the unprocessed raw measurements are transmitted to the fusion center.  
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Fig. 1 Centralized fusion process. 
 

III. SYSTEM MODELS 
 

A. Target Motion Model 
 
The maneuvering target motion is modeled by three switching dynamics models whose evolution follows 

a Markov chain, also called a Jump Markov System (JMS) [4, 7]. We assume that at any time, the target 

moves according to one of s = 3 dynamic behavior models: (a) Constant Velocity (CV) motion model, (b) 

clockwise Coordinated Turn (CT) model, and (c) anticlockwise CT model. Let S= {1, 2, 3} denotes the 

set of three models for the dynamic motion. Then, the target dynamics can be written as 
( )

1( )  kr
k k kf −= +x x v  

where xk is the state vector defined by ]      [ yyxxk &&=x , k denotes the discrete time index, and rk∈S is 

the regime variable taking effect in the time interval (k−1, k], with transition 

probabilities ),(},|Pr{ 1 Sjiirjr kkij ∈=== +

Δ

π , such that 
j

0, 1ij ijπ π≥ =∑ . The initial probabilities 

are denoted by }Pr{ 0 iri ==
Δ

π for i S∈ , and 0iπ ≥ , 1i
i

π =∑ . vk denotes the white Gaussian noise 

with covariance matrix Q:  
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q is a scalar, and T is the sampling time. For the CV motion model, the )()( ⋅krf  function can be replaced 

by the transition matrix )()( ⋅krF . When rk=1, )()( ⋅krF  corresponds to the standard CV model 



52 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1000
100

0010
001

)()1(

T

T

F kx  

rk=2,3 correspond to clockwise and anticlockwise CT motions, respectively. 
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )

sin( ) 1 cos( )1 0

0 cos( ) 0 sin( )
( ) , 2,3          

1 cos( ) sin( )0 1

0 sin( ) 0 cos( )

j j
k k
j j

k k
j j

k kj
k j j

k k
j j

k k
j j

k k

T T

T T
F j

T T

T T

ω ω
ω ω
ω ω

ω ω
ω ω
ω ω

⎡ ⎤−
−⎢ ⎥

⎢ ⎥
⎢ ⎥−

= =⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x  

Here the mode-conditioned turning rates are given by  

22

)3(

22

)2(

yx
a

yx
a

m
k

m
k

&&

&&

+
−=

+
=

ω

ω

 

where ma is the constant maneuver acceleration parameter.  

 

B. Sensor Measurement Model 
 
Three types of sensors are used in our work. These are 1) ESM sensor that reports bearing-only 

measurements, 2) range sensor that reports range measurements and 3) 2D RADAR sensor that reports 

range-bearing measurements [8]. The measurement model can be mathematically written as 
( ) ( )j i

k k kh= +z x w  

where j
kz  is the measurement from sensor j . ( ) ( )ih ⋅  corresponds to three types of sensor measurement 

models, 1,2,3i =  

(1) 1( ) tan
j

j

s
k

k s
k

y yh
x x

− ⎛ ⎞−
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x  

( ) ( )2 2(2) ( ) j js s
k k kh y y x x= − + −x  
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where ( , )k kx y  is the target position at time k, ( , )j js sx y  is the position of sensor j . kw denotes the 

measurement noise. In our work, we examine the glint noise as well as standard Gaussian noise [5]. Glint 

noise has a non-Gaussian distribution, and a mixture approach is widely used in modeling the non-

Gaussian glint noise. In the proposed tracking algorithm, the glint noise is modeled by a Gaussian 

Mixture Model (GMM) with two components.  

),0()1(),0(~w 21 Σ−+Σ NN ggk αα  

where 0.5gα >  is the glint probability, and 1 2Σ < Σ . Note that when 1gα = , glint noise degenerates to 

standard Gaussian noise with zero mean and covariance matrix 1Σ .  

 

IV. TRACKING ALGORITHMS 
This section describes the recursive algorithms implemented for tracking a single target using EKF or 

particle filter techniques. Two of the algorithms are EKF-based and the other two are PF-based schemes. 

The algorithms considered are (i) EKF-IMM, (ii) PF-IMM, (iii) EKF-Glint Noise, (iv)PF-Glint Noise. All 

four algorithms are applicable to both single-sensor and multi-sensor scenarios. 

 

A. Extended Kalman Filter 
 
Extended Kalman filter is a minimum mean square error (MMSE) estimator based on the Taylor series 

expansion [1]. The mean kx  and covariance kP  of the Gaussian approximation to the posterior 

distribution of the states can be derived as follows: 
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where kK  is the Kalman gain, Jacobians of the process model and measurement model are given by 
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where , ik sH  is the Jacobian of the measurement model for each sensor, and , ik sR  is the covariance of the 

measurements model.  

For the maneuvering target tracking problem, the IMM algorithm has been shown to be one of the most 

cost effective and simple approaches. At each calculation cycle, the IMM consists of three major steps: 

interaction (mixing), filtering and combination. At each time, the initial condition for the filter matched to 

a certain mode is obtained by mixing the state estimates of all the filters at the previous time under the 

assumption that this particular mode is in effect at the current time. This is followed by a regular filtering 

step, performed in parallel for each mode. Then a combination of the updated state estimates of all the 

filters yields the state estimate.  

 

B. Particle Filtering 
 
Particle filters represent the state probability density function approximately through a set of samples and 

implement Bayesian recursion directly on the samples instead of dealing with the exact analytical 

functional representations of the distributions [2, 3]. Tracking framework based on particle filtering will 

show better performance on nonlinear/non-Gaussian problems. The recursive Bayesian filtering paradigm 

provides the a posteriori PDF 1:( | )k kp x z  via the prediction and update recursions.  

Prediction: 

1 11: 1 1 1: 1
( ) ( ) ( ) ( )k k k kk k k

p p p d− −− − −
= ∫x z x x x z x  

Update: 
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where the state kx  evolution is described in terms of the transition probability:  

1 1 11 1 1

1 1 1 1 1
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And how the given kx  fits the available measurement kz  is described as: 

       ( ) ( ( , )) ( )k k k k k k kk
p p dδ= −∫z x z h x w w w  

For maneuvering target tracking, the aim of the optimal filter is to sequentially estimate the unknown 

hybrid hidden state { , }k krx  given the observations 1:{ }kz . Applying Bayes’ rule, the formulation of the 

recursion that updates 0: 1 1: 1 1: 1( , | )k k kp x r− − −z  to 0: 1: 1:( , | )k k kp x r z  can be derived as 

10: 1: 1: 1 1 1
0: 1: 1: 0: 1 1: 1 1: 1

( | , , ) ( | , )
( , | ) ( , | ) k kk k k k k k k r r

k k k k k k

p r f x x r
p x r p x r

C
π

−− − −
− − −=

z x z
z z  

where C is a constant. The basic idea for solving maneuvering target tracking using a particle filter is to 

decouple the hybrid estimation problem into a discrete part and a continuous part. We assume that sensor 

measurements are independent from each other. Here is the summary of the particle filter solution for the 

maneuvering target tracking problem in sensor networks. 

 Generate samples of ( )i
kr from an importance proposal distribution },|{~~ )(

1:1:1
)( i

kkk
i

k rZrr −π , 

where 1:kZ  represents the measurements from all the sensors up to time k. Generate 

samples ( ) ( )
1~ ( | , )i i

k k k kp r−x x x% . 

 Evaluate the importance weights 
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 Normalize the weights 
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 Resampling: multiply/discard particles ( ){ , 1,2,..., }i
kr i N= with respect to high/low normalized 

importance weights ( )i
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V. SIMULATION RESULTS 
 
We address the problem of tracking a maneuvering target in noise using multiple heterogeneous sensors. 

Fig 2 shows the tracking scenario. In our experiments, we use the dynamic state space model to generate 

the synthetic data, and 50 Monte Carlo computation simulations were carried out to evaluate the 

performance of the algorithms for each experiment. The position mean square error is defined as 

2 2

1

1 ( ) ( )
N

k k k k k
n

MSE x x y y
N =

⎡ ⎤= − + −⎣ ⎦∑  
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Fig 2. Simulated path of the target 

We set sampling rate T=1, q=20, then  
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The typical maneuver acceleration parameter is set to mα = 1m/s2. Mode probability transition matrix 
used in the IMM is  

0.9 0.05 0.05
0.6 0.3 0.1
0.6 0.1 0.3

⎡ ⎤
⎢ ⎥Π = ⎢ ⎥
⎢ ⎥⎣ ⎦  

We set the glint probability 0.9gα = , measurement noise covariance 2 110Σ = Σ , and  

1

3.0462e-004 0
0 5

⎡ ⎤
Σ = ⎢ ⎥
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A. Tracking target using two bearing-only sensors 
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 Bearing-only sensors are located at )100,100(),( 11 mmyx ss = and )250,0(),( 22 mmyx ss = , 

respectively. PF shows better tracking performance than EKF. As we can see later, this is the most 

difficult case to track the target, and the tracking results of using two bearing-only sensors are much 

worse than those of using two range sensors. For the difficult case (A.2) where the target is maneuvering, 

we can see that the MSE for both EKF and PF are higher than those in the case where target motion 

follows a CV model (A.1).  

 

 A.1 CV model with glint measurement noise 
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B. Tracking target using one radar sensor.  

 We assume that a radar is located at ( , ) (500 ,500 )s sx y m m= . From the experimental results, 

we can see that except for the first few steps, EKF and PF achieve almost the same MSE. But the 

computation time is much shorter for the EKF. For the difficult case where the target is maneuvering, we 

can see that the MSE for both EKF and PF are higher than those for the case of target motion that follows 

a CV model.  

 B.1 CV model with glint measurement noise 
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C. Tracking target using one range sensor and one bearing-only sensor 

 The range sensor position is set to )250,0(),( 11 mmyx ss =  , and bearing-only sensor position is 

set to )100,100(),( 22 mmyx ss = . The function of bearing-only sensor plus range sensor is almost the 

same as a single radar sensor, except the bearing-only sensor and range sensor are located at different 

locations, so we have similar experimental results as in case B. 

 C.1 CV model with glint measurement noise 
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D. Tracking target using two range sensors 

 Two range sensors’ positions are set to )250,100(),( 11 mmyx ss =  and )0,300(),( 22 mmyx ss = , 

respectively. For this sensor configuration, the PF still has similar steady-state performance as that of 

the EKF. 

 D.1 CV model with glint measurement noise 
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E. Tracking target using bearing only, range and radar sensors 

Sensors’ positions are set to )0,250(),( 11 mmyx ss = , )250,0(),( 22 mmyx ss =  

and )500,500(),( 33 mmyx ss = . Here we use three different sensors, and MSE is much smaller than the 
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previous cases. As expected, more accurate tracking results are achieved, since we are fusing data from 

more sources. Again, the PF and the EKF have very close steady-state performance.  

 E.1 CV model with glint measurement noise 
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 E.2 Maneuvering target 
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From the above experiments, we can observe that even when the measurement model is nonlinear for all 

types of sensors, using particle filtering does not always achieve a better steady-state performance in 

terms of MSE. Only under the conditions where only bearing-only sensors are used, the particle filter 

shows better performance than the EKF. We also found that even when the initial condition for both EKF 

and PF is the same, in the first few tracking steps, PF tracking results are more accurate than EKF. This is 

a valuable characteristic, especially when clutter and false alarms are among the measurements. When the 

measurements contain many false alarms, there is uncertainty as to which measurement is from the target 

and which is a false alarm. With such uncertainty, inaccurate estimates even at one time step could lead 

the filter to diverge and result in the loss of the target track. The PF has the potential to maintain the target 

track for a longer time in such harsh and realistic conditions. This issue needs further investigation in the 

future.  
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Introduction 

During the summer of 2007 I worked in the Fusion Technology branch (IFEA).  I 

was part of an in-house team focused on developing and improving non-linear tracking 

techniques.  I aided in the finalization to the Development and Evaluation of Fusion 

Techniques program known as DEFT.  I also worked on the In-House Particle Filtering 

and Testing program along with the newest effort:  Tracking Evasive Non-Linear Targets 

(TENT).   

These efforts in one way or another were related to non-linear tracking.  I focused 

on developing and evaluating different techniques to deal with non-linear tracking.  I 

researched a variety of filters based upon the Kalman filter and the particle filter.  Other 

topics of interest I’ve examined include: out of sequence measurements (OOSMs), 

multiple target tracking, flight dynamics, sensor characteristics, methods for evaluating 

tracker performance, probability theory and statistics, as well as many others. 

In this report a basic introduction to particle filters illustrating the details of its 

operation as well as its pros and cons are provided.  Thorough analysis of in-house 

simulations run during the summer is presented.  Two sources for code are presented for 

future reference.  Finally recommendations for future research are detailed.   

 

Background on Particle Filters 

Kalman filters have been used for decades and various adaptations have been 

produced through the years to deal with troubling issues such as dealing with non-

linearity.  A solution used to address some of the weaknesses exhibited in Kalman filters 

is the particle filter.  Although particle filtering has been around for quite some time too, 
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it has only recently come back into the spotlight.  In the past the particle filtering was 

deemed too computationally expensive for realistic use but with the advent of faster 

processors and technological upgrades, particle filters are acquiring a new look.   

“Particle filters are sequential Monte Carlo methods based upon point mass (or 

‘particle’) representations of probability densities, which can be applied to any state 

space model, and which generalize the traditional Kalman filtering methods” [1].  In 

other words, a particle filter can estimate a state space model by representing the 

posterior density function using many random samples (particles) with assigned weights.  

As the number of these particles increases the representation of the pdf reaches its 

optimal state.   

There are numerous variations of particle filters but one of the most basic is a  

Sequential Importance Resampling (SIR) Filter.  There are only a few basic steps to this 

filter.  Initialization begins with establishing a prior probability distribution, that is, an 

initial guess in the form of a probability distribution over the state at the start time.  This 

corresponds to how likely it is for the target to be at a given location.  Next a set of 

particles are drawn from this initial prior probability distribution and the filter is 

initialized.   

Once the filter is initialized it repeats three basic steps.  The first is generating a 

proposal distribution.  This step asks “where could the target have moved to given what I 

knew about where it might have been an instant before.”  It predicts the state of the target 

given all previous observations. 
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  The next step is incorporating observations.  This step takes information from 

the sensors and updates the belief where the target is located by assigning importance 

weights to all the particles.   

The final step is resampling and it is required for the filter to maintain diversity.  

SIR filtering is unique in that the resampling step aids in reducing the degeneracy 

problem.  After a few iterations of the basic particle filtering process all but one particle 

will have negligible weight.  Resampling determines the number of effective particles 

(i.e. particles with high weights) remaining and if it is below a certain threshold shifts the 

negligible particles closer to the effective particles.  The filter resamples particles 

according to the renormalized weights.  Particles with higher weights get sampled more 

often than particles with lower weights.   

The particle filter has several benefits compared to other filters.  The particle filter 

performs well in non-linear situations and is capable of handling a non-linear state and 

observation model.  The particle filter is also designed to perform well with non-Gaussian 

distributions and allows the use of multi-modal distributions.  Unlike some filters the 

particle filter estimates the full probability density function of the state.  With a near 

infinite number of particles the results produced are close to the optimal solutions.   

There are also several drawbacks with using a particle filter.  The most common 

concern is its computational cost.  As the particles increase in number, the number of 

computations increases dramatically.  Along with other filters the particle filter is also 

prone to the curse of dimensionality.  As the number of dimensions increase the 

computational complexity increases exponentially.  The problems associated with 

degeneracy mentioned previously exist in many versions of particle filters.  Often particle 
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filters simply aren’t necessary in some applications and a basic linear-Gaussian 

assumption is sufficient to produce the desired results. 

 

In-House Simulations 

Utilizing in-house software already developed in collaboration with Syracuse 

University, I compared the effectiveness of an Extended Kalman filter (EKF) against a 

particle filter (PF).  The simulations run via MATLAB tracked a moving ground target 

using an IMM-EKF and a MM-PF with bearings-only sensors.  The path of the target 

could be modeled in a variety of ways to increase or decrease the degrees of linearity.  

Any number of bearings-only sensors could be placed around the target.  I analyzed the 

simulation and determined how numerous parameters interacted with one another. 

Comparison of the EKF vs. PF depends on several factors including:  sensor 

position, process noise (determined by a scalar multiplier “q”), number of particles used 

in the particle filter, measurement noise, and glint noise.   

The first scenario that was extensively analyzed consisted of the ground target 

initially heading 160 degrees from North at 70 mph.  After 20 seconds, the target 

executed a Counterclockwise Coordinated Turn for 3 seconds, to establish a new course.  

The target then traveled with a Constant Velocity motion until it executed its final 

maneuver for 4 seconds, a Clockwise Coordinated Turn. 

For this scenario, two bearings-only sensors were activated at a time and 

positioned at fixed points surrounding the moving target.  To understand the effects of 

sensor positioning, these two sensors were repositioned in 15 different setups. 
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 Sensor position can degrade overall tracking performance for both EKF and PF.  

Overall tracking performance refers to RMSE and variance.  A high tracking 

performance is described as having low RMSE and low variance.  Performance is 

degraded when the sensors are not lined up normal to the target track.  When the sensors 

are lined up in parallel with the direction of motion of the target, performance is 

minimized. 

 In this scenario, overall tracking performance was at a minimum when:  1) the 

two sensors were positioned side by side on all four sides of the target’s track; 2) the two 

sensors were positioned on opposite sides of the target track parallel with the target’s 

motion.  Alternatively, tracking performance was maximized when either:  1) one or 

more of the sensors were positioned close to the target track so at no time during the 

simulation was the sensor in parallel with the target’s motion; 2) the two sensors were 

positioned at right angles on the outside of the target tack ensuring at least one sensor was 

normal to the target at all times.   

 In the two cases mentioned previously where performance is minimized, the EKF 

outperformed the PF in nearly every situation.  When the bearings-only sensors are 

positioned in such a manner the particle filter has difficulty recognizing range and as a 

result may make a wrong turn, while the EKF does not experience this problem.  This 

may be due to the specific implementation of each filter or perhaps may suggest the 

particle filter is more suitable with an addition of a range sensor such as radar.  Despite 

the EKF’s performance over the PF, it is important to remember the RMSE and the 

variance were still very large for both filters in this sensor setup. 



  
 

 68

 When the sensors are positioned in the two cases where performance is 

maximized the results weren’t as one-sided toward the EKF as when the sensors were 

positioned poorly.  A noticeable trend emerged from this sensor setup.  The PF 

outperformed the EKF whenever “q” was set to a negligibly low value no matter how 

many particles were used (50, 100, 500).  This poor performance by the EKF with a low 

“q” value was found to be the direct result of an initialization issue.  In this scenario the 

two filters initialized their tracks at a different position than the actual initial target 

location.  This caused the EKF to lose the track immediately after the first few time steps 

because the low “q” value represented high confidence in the EKF’s measurements when 

in fact the measurement was far away from the actual target location.  The particle filter 

did not exhibit any such behavior with the varying process noise levels.  Thus it can be 

seen that the EKF is highly dependent on process noise while the particle filter is less 

dependent. 

 When the PF was set to 50 particles, in this performance maximization sensor 

setup once again, the EKF showed better performance for the “q” values of 0.5, 1, and 5.  

As the number of particles increased, the performance of the PF increased (with the 

exception that simulation time increased dramatically as a result from more 

computational complexity).  When the number of particles was increased to 100 the EKF 

outperformed or did just as well as the PF with the exception of when “q” was set to a 

negligibly small number such as 6106.1 −×  as mentioned above.  Once the number of 

particles was set to 500 the PF either outperformed or did just as well as the EKF.  As 

expected theoretically, as the number of particles approaches infinity, the closer the 

results will become optimal. 
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 The effects of varying levels of measurement noise were briefly evaluated.  For 

ranging levels of measurement noise it was discovered there exists a maximum and 

minimum threshold not to be exceeded.  Performance deteriorates severely when the 

measurement noise becomes too high or even too low.  

The ensuing series of scenarios generated focused on the degrees of non-linearity 

of the target’s track.  The main independent variable was track configuration.  Four 

different paths for the ground target were examined:  a straight line, a circle, a u-turn, and 

a multiple turn model.  The parameters tested in the previous scenario:  process noise, 

measurement noise, and number of particles were set to fixed values.  Multiple bearings-

only sensors were positioned in fixed locations around all four target tracks in an attempt 

to minimize the impending effects of sensor positioning discovered in the first scenario.   

Results from these four different target paths failed in their attempt at providing 

insight on the effects of target non-linearity.  For all four target paths the EKF and PF 

produced nearly identical results and no visible pattern could be established as to when 

one filter outperformed the other.  However this may be due to a fundamental flaw in the 

simulation itself.  Sampling from the measurements occurs at every time step and as a 

result may be sampling too quickly.  With such a high measurement sample rate the two 

filters may be impersonating a non-linear trajectory such as a circle as linear.   

Although increasing the number of sensors in these scenarios was intended to be a 

panacea for dealing with sensor alignment issues discussed in the first scenario, it failed 

in simplifying the experiments.  With an increase in the number of sensors tracking 

performance is naturally increased.  However with increased performance for both filters 

it becomes difficult to visually substantiate one filter’s performance over the other.  If the 
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number of sensors is reduced, performance is reduced to the point where it is difficult to 

determine whether a specific filter reacting to non-linearity is to blame or whether it’s 

just poor sensor positioning coupled with a high sampling rate.   

The effect of glint noise was also examined for the multiple turn model of the 

target trajectory.  It was clear that glint noise had a detrimental effect on performance.  

As the effects of glint noise were increased, performance decreased.  Although the 

performance did not change immensely as the effects of glint were increased (perhaps 

due to the use of multiple sensors and high sample rate), the transient response of the 

generated tracks showed a moderate change in performance.  More importantly, and 

perhaps of high note, the PF initially outperforms the EKF in the presence of glint.  This 

may prove the theory that particle filters can outperform an EKF in non-Gaussian noise 

environments.   

Other Examples of Code 

In an undertaking to fully understand the efficacy of a particle filter, past 

implementations of particle filters already constructed were investigated.  Two main 

sources are to be highlighted.  The first is code written by Michael A. Goodrich to 

support Brad Huber’s thesis work [2] and the second source is a series of examples from 

Dan Simon’s book Optimal State Estimation:  Kalman, H-infinity, and Nonlinear 

Approaches [3].   

Huber’s thesis proposed to equip a mini-UAV with radio sensors and use 

Bayesian filtering techniques to locate an Emergency Locator Transmitter for a downed 

aircraft.  Huber created a MATLAB simulation of a mini-UAV with noisy non-linear 
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sensor behavior that searches for a downed aircraft.  Goodrich adapted Huber’s code and 

created a simplified version of the existing particle filter implementation.   

The code is important because it acts as an analysis tool.  One can directly see the 

effects of changing particle filter related parameters on the simulation.  Since most of the 

information available on particle filtering is theory and pseudo code, the code provides a 

rare opportunity for seeing actual values.    

The code from Dan Simon provides several examples of not only particle filtering 

but other examples of non-linear, Kalman, and H-infinity filtering.  Simon’s examples are 

basic and designed to be simple supplemental guides to his book.  Studying these 

examples provide all the same advantages as Huber’s thesis work but also offer variety 

and alternative techniques.   

 

Recommendations for Future Research 

While understanding that some initial research may have already taken place and 

that it takes time to produce results, recommendations for future research are still 

presented.   

When trying to produce a simulation it is absolutely essential that the confines 

and parameters are known.  For the future, work needs to be done researching “real 

world” values to apply to simulations.  Data needs to be collected using existing 

implementations of non-linear tracking as well as sensor information. Research should 

not only include reading for information but cataloging the results of what has been 

learned.   
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Development of a sophisticated scenario generator needs to be developed.  A 

generator that is capable of handling multiple tracking filters with an easy to use interface 

for changing parameters would be the ultimate goal.  The tracks and values generated 

should be based on realistic recorded data.  Methods to evaluate tracking performance 

such as root mean square error, variance, or Cramer-Rao Lower Bounds should be 

included. 

If future work on the existing software is desired, changes should be immediately 

made to the measurement sample rate.  If new results are generated from that change one 

may be able to see the effects from varying parameters more clearly.  Introduction of 

alternative types of sensors such as radar may show different results.  Further research 

into the effects of non-Gaussian noise on different filters should be looked into. 

It is necessary to establish a general base of knowledge before advanced measures 

can be introduced.  While remembering to take a “crawl before you walk” approach, 

future work in implementing advanced measures should be implemented after 

preliminary results have been produced.  Meaning it is important to understand how the 

elements of non-linear tracking interact with one another at the fundamental level first 

and foremost.  Once this is achieved more complex incorporations may be introduced to 

simulations such as Out of Sequence Measurements (OOSMs), multiple target tracking, 

different filter types, adaptive filters, smoothing techniques, or any others.   
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Appendix III.  Summer Student Report 2007: Becky Bailey 
 
Nonlinear Filtering Using Solutions to the Fokker-Planck 
Differential Equation 
 

 Target tracking has been one of the problems encountered by engineers for many 

decades.  The main goal of this problem is to track a target that is moving on some 

trajectory using measurements given by sensors.  Although on the surface, this may seem 

like a fairly simple problem, there are numerous challenges contained within the different 

tracking scenarios.  These include the facts that sensors produce noisy measurements, 

data is often received at irregular time intervals, obstructions occurring in the “view” of 

the target (i.e. bridges, buildings, etc.), data association problems due to multiple targets, 

and nonlinearity of tracks.  Due to the previously mentioned challenges that occur in 

target tracking, developing an algorithm that solves the entire tracking problem and takes 

into account the many different scenarios that can develop has been a very difficult task 

for engineers.  This paper will focus on one of the main problems in tracking, which is 

the nonlinearity of a target’s track.  More specifically, a new nonlinear tracking filter will 

be explained which uses solutions of the Fokker-Planck differential equation to solve the 

nonlinear tracking problem. 

 In general, tracking algorithms can be divided into three main steps: initialization, 

prediction, and update.  All tracking filters that have been developed deal with these three 

steps in some form or another.  The initialization step refers to the process of obtaining an 

initial state based on a certain degree of uncertainty.  The prediction step predicts where 

the target should be based only on previous measurements using the system dynamical 
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model. This creates the state estimate.  The update step actually uses the measurement 

upon arrival from the sensor to update the state estimate. A probabilistic based weighting 

is used to create an optimal combination between old and new information. [1] 

The majority of filtering algorithms developed up to this point have either dealt 

with linear tracks, or used some sort of linearization process to linearize the nonlinear 

target tracks.  One of the most widely known filtering algorithms developed for target 

tracking is the Kalman Filter, which was developed in the 1960’s by Rudolf Kalman.  

Although this filter is the optimal filter for the linear-Gaussian tracking problem, its real 

world application is minimal due to the numerous assumptions made in the theory.  In 

particular, the Kalman Filter not only assumes the target track to be linear, but the noise 

signal and the posterior density are both assumed to be Gaussian.  These are very limiting 

assumptions because rarely does this type of scenario occur in the real world, making it 

obvious that the Kalman Filter needed to be extended to nonlinear situations.  This was 

done with the Extended Kalman Filter (EKF), which basically linearized the nonlinear 

situations by assuming local linearity of the target’s track. 

The filters discussed thus far have not really “solved” the nonlinear tracking 

problem, but have linearized the nonlinear problem, and then calculated a linear solution.  

While there have been some other nonlinear tracking filters that do not actually solve the 

Fokker-Planck Equation (FPE), such as the particle filter, my focus during my time here 

has been on nonlinear filters that solve the Fokker-Planck Equation.  To understand these 

filters, and their approach to the nonlinear tracking problem, one must first have an 

understanding of what the FPE is and how it is used in tracking. 
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 The Fokker-Planck Equation is a second order partial differential equation of 

motion for the probability density function of continuously changing macroscopic 

variables.  Solving this equation leads to a probability density function enabling one to 

find any of the averages for macroscopic variables by integration.  When applied to 

nonlinear filtering, this equation explains the progression of the conditional probability 

density of the state vector between the times at which measurements are actually taken.  

To solve this equation in real time would solve the nonlinear filtering problem.  The 

difficulty in this is that the solution suffers from the “curse of dimensionality,” and 

therefore the computational complexity of the solution grows exponentially with the 

dimension of the state vector. [2] 

 The general FPE is given in the following form: 

 

 
 
With the variables being defined as follows: 
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 In nonlinear filtering, the FPE takes a specific form based on the model used to 

define the dynamic system.  This model is given by the following equation: 

ω+′=′ ),( txfx&  

Where x′  is the system state vector, while the forcing function,ω  is a random process.  

The probability density function ),( txp for the state variables defined by (2) satisfies the 

FPE of the following form: 
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∂  is the Jacobian of the transpose of p with respect to x′ , and Q is the 

process noise matrix. [3] 

 In his paper [4], Fred Daum develops a filter which solves the FPE, and in 

combination with an exponential function, he solves the nonlinear filtering problem.  

Unlike the Kalman filter which can only handle the class of Gaussian probability 

densities, Daum’s filter generalizes this so that any multivariate probability density from 

the exponential family can be used.  In this theory, Daum considers the random variable 

x(t), which evolves continuously in time according to the following equation: 

dx(t) = f(x, t)dt + G(t)dw 

In this case, f is a nonlinear function of x, and w(t) is an Rn-valued Brownian motion.  He 

then assumes that there exists a positive real-valued function, Ψ= Ψ(x,t) that satisfies the 

following FPE corresponding to (4): 
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If all of Daum’s assumptions and conditions are satisfied, the result of his theory is  an 

exact formula for the unnormalized probability density of the state at a specific time 

conditioned on the set of discrete time measurements Zk={z1, z2,…, zk}.  This 

unnormalized probability density is given by the following formula: 
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Where mk and Pk can be computed recursively using the following formulas: 

 

 

 Although the recursive formulas for mk and Pk lead the reader to believe that they 

are the mean and covariance of the state, they are not. In Remark 3 of his paper, Daum 

states, “Note that mk is not the conditional mean of xk, and Pk is not the conditional 

covariance matrix of xk. But rather, mk and Pk can be thought of as the mean and 

covariance matrix of some Rn-valued auxiliary Gaussian random variable.” [4]  Since it is 

very difficult to create a recursive filter without the mean and covariance, in [3] Schmidt 

develops a way to relate Daum’s variables mk and Pk to the actual mean and covariance x̂  

and M.  The following equations were derived by Schmidt for the mean and covariance 

based on Daum’s theory: 
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As a reader familiar with tracking can quickly see, the equation for propagating the 

covariance only differs from that of the EKF by the factor of 

 

It is also evident that the equation for propagating the mean only differs from that of the 

EKF by the factor of   

 

These two factors, (10) and (11), are the part of the propagation equations that take into 

account Daum’s parameters mk and Pk.  The update equations are also very similar to 

those of the EKF and are given as follows: 

 

 

 

Where the parameters before update are indicated by (-), and after update they are 

indicated by (+). 

 Overall, Daum was able to divide the tracking estimation problem into two 

separate steps.  One step consists of the recursive calculation of mk and Pk based on the 

sensor measurements.  As previously revealed, this can be done with equations very 

similar to those of the Kalman filter.  Schmidt took this step one level further, and 

developed propagation and update equations for the mean and covariance based on 

Daum’s parameters mk and Pk.  The other general step in Daum’s theory consists of the 
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calculation can be done off-line, before the actual observation interval using numerical 

solutions to the FPE. 

 Daum’s filter that was previously described is a “finite-dimensional” filter, which 

means that it can be implemented by integrating a given number of ordinary differential 

equations. [4]  In [5], Daum, along with Lambert and Weatherwax, develops a different 

filter, which they call the “wave filter.”  This algorithm solves the nonlinear tracking 

problem by simply solving the FPE for the conditional probability density function.  This 

is done in a “split-step solution,” which suffers from the “curse of dimensionality,” unlike 

Daum’s previously explained filter.  The idea behind this filter is to solve the FPE using 

the “split-step solution,” which can be viewed as the propagation step of the algorithm.  

Then for the update step, the conditional density is updated upon arrival of new 

measurements using Bayes’ rule.  This is given by: 

 

 
 
 
 
 In constructing the “split-step solution,” the following system dynamic model was 

used to describe the dynamic behavior of the system: 

ttt dwxfdx += )(  

In this model, the process noise vector wt is a zero mean Gaussian white noise process 

with spectral density matrix Qt [5].  The FPE used to describe the evolution of the 

conditional probability density between measurements is given by: 
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The solution described here will consider two separate special cases of this FPE in order 

to come to one unified solution.  The first case considered will be the case where there is 

time invariant process noise, and therefore, ft = 0 and Qt = Q.  With these conditions in 

mind, the FPE reduces to: 

This reduced form of the FPE can actually be viewed as the diffusion equation with Q 

being the diffusion coefficient.  Equation (15) can be solved by computing the 

convolution integral using an algorithm such as the Fast Fourier Transform (FFT).  The 

second special case considered in this split-step solution is the case where there is no 

process noise, and therefore Qt = 0.  In this case, the FPE reduces to:  

 

 
 
 
In this form, ft can be viewed as the drift vector, while the equation itself has actually 

been reduced to the convection equation.  With a bit of manipulation, (16) can be 

transformed into a system of ordinary differential equations given by: 
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 By combining the two special cases, one can solve the general FPE used for this 

nonlinear filtering problem.  This is done by requiring the process noise spectral density 

matrix to be discrete time.  In essence, the situation being viewed here is the case where 

process noise is “injected” into the system at discrete time intervals, which coincide with 

the measurement times.  In mathematical form, this means: 

 

Where )( ktt −δ  is the Dirac Delta function.  By letting ∑ −=
k

kkt ttQQ )(δ  one can say 

that immediately after the measurement step, the FPE reduces to the diffusion equation 

(15), and between measurements the FPE reduces to the convection equation (16).  Since 

the solutions for both special cases have been described, the FPE for this nonlinear 

filtering algorithm can be solved. [5] 

 This technique of using numerical solutions of the Fokker-Planck equation to 

solve the nonlinear tracking problem can be simply viewed in the following flow chart: 
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 One of the other areas that I looked at this summer was the TENET (Techniques 

for Nonlinear Estimation of Tracks) software developed by Musick and Greenewald. [7]  

This piece of software implemented two tracking algorithms.  One was a particle filter 

method, while the other used an ADI (Alternating Direction Implicit) finite difference 

method to solve the FPE.  My focus was more on the ADI finite difference method, since 

it used a numerical approximation of the FPE to solve the tracking problem.  The FPE it 

solved, defined by sub-operators, is given in the following form: 
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An alternating direction implicit scheme with finite difference methods is used to solve 

the FPE in this software.  After running the software with one Monte Carlo run, my 

results are given in the following diagrams:                                                                                                         
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FPE Method PF Method
**Note: Y-Axis scales are different 
[7] 

FPE Method PF Method
 ** Note: Y-Axis scales are different 
[7] 
 

By comparing the error in the particle method against that of the FPE based method (ADI 

method), the following table was developed: 
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.290 meters.476 metersPosition Error

.312 m/s.748 m/sVelocity Error

PFFPEError

 

As one can easily see, the particle filter outperformed the FPE based method in both 

position and velocity error.  This can be explained by the scenario tested in the TENET 

simulator.  In this simulation, a single dim target was tracked in 2D space with a high 

degree of nonlinearity.  The a high degree on nonlinearity and presence of only a single 

target creates a situation favoring the algorithm in the particle filter over that of the FPE 

based method.  In the future, more work could be done with the TENET software, 

especially in looking into defining situations where the FPE based method outperforms 

the particle filtering method, computation of flops in order to compare which algorithm is 

more efficient, and comparing the performance of each algorithm against the resources 

used up in the running of the algorithm. 

Designing nonlinear tracking filters has been a very difficult task for engineers.  

The most direct way to solve the problem seems to be by using numerical solutions to 

solve the Fokker-Planck equation for the conditional probability density, but this quickly 

becomes unreasonable due to the fact that the solution suffers from the “curse of 

dimensionality.”  Daum developed a filter which uses the Fokker-Planck equation for 

probability density in combination with an exponential function and sufficient statistics to 

solve the nonlinear tracking problem, but his conditions and assumptions are still fairly 



  
 

 86

limiting to the real world application of the theory.  Hopefully, in the future, a nonlinear 

tracking filter will be developed that defeats the “curse of dimensionality,” and is able to 

be applied to a wider range of real world scenarios. 
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List of Acronyms 
 
AFRL/IF  Air Force Research Laboratory / Information Directorate 
ADI   Alternating Direction Implicit 
AIAA   American Institute of Aeronautics and Astronautics 
ANTS   Adaptive Nonlinear Tracking System 
BRAT   Baseline Road Assisted Tracker 
BYU   Brigham Young University 
C   constant 
CAFÉ   Complementary Advanced Fusion Exploration 
C2ISR   Command Control Intelligence Surveillance & Reconnaissance 
CT   Constant Turn 
CV   Constant Velocity 
DEFT   Development and Evaluation of Fusion Techniques 
DoN   Degree of Nonlinearity 
EKF   Extended Kalman Filter 
EKF-IMM  Extended Kalman Filter- Interacting Multiple Model 
ELINT  Electronic Intelligence 
ESM   Electronic Support Measures  
FPE   Fokker Planck Equation 
FTNLF  Fusion Techniques and Nonlinear Filtering 
GMM   Gaussian Mixture Model 
HPCs   High Performance Computers 
IEE   Institute of Electrical Engineers 
IEEE   Institute of Electrical and Electronics Engineers 
IFTC   Information Directorate Computing Branch 
IHPFAT  In-House Particle Filtering and Testing 
IMINT  Image Intelligence 
IMM   Interacting Multiple Model 
IMM-EKF  Interacting Multiple Model Extended Kalman Filter 
ISR   Intelligence Surveillance and Reconnaissance 
JMS   Jump Markov System 
KF   Kalman Filter 
m   meters 
MATLAB  Matrix Library (Trademark) 
MC   Monte Carlo 
MMSE  Minimum Mean Square Error 
MM-PF  Multiple Model Particle Filter 
MoN   Measures of Nonlinearity 
MSE   Mean Square Error 
MULTI-INT  Multiple Intelligence 
N   Number of 
NNGP   Non-Linear Non-Gaussian Processes 
OOSMs  Out of Sequence Measurements 
OOSP   Out of Sequence Problem 
OWN   Ownship 
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OWN MVMT Ownship Movement 
PDF   Probability Distribution Function 
pdf   Probability Density Function 
PF   Particle Filter 
PF-IMM  Particle Filter Interacting Multiple Model 
q   Maneuver Index   
RADAR  Radio Detection and Ranging 
RF   Radio Frequency 
RMS   Root Mean Square 
RMSE   Root Mean Square Error 
Rn   N-Dimensional ; Real Number Space 

SIS   Sequential Importance Sampling 
SIR   Sequential Importance Resampling 
SMC   Sequential Monte Carlo 
SPIE   Society of Photo-Optical & Industrial Engineers 
SU   Syracuse University 
T   Time 
TENET  Techniques for Nonlinear Estimation of Tracks 
TENT   Tracking Evasive Nonlinear Targets 
tr   Trace 
UAV   Unmanned Aerial Vehicle 
UKF   Unscented Kalman Filter 
UPF   Unscented Particle Filter 
UTC   Universal Time Code 
v   versus 
z   Measurement 
x   Track 
2D   Two Dimensional 
  

 




